DOI:10.19948/j.12-1471/P.2023.01.08

苏丹红海州新元古代A型花岗岩的地球化学特征 及构造意义

周佐民^{1,2},李 勇³,刘晓阳^{1,2},吴兴源^{1,2} (1.中国地质调查局天津地质调查中心,天津 300170; 2.中国地质调查局南部非洲矿业研究所, 天津 300170; 3.中国地质调查局武汉地质调查中心,武汉 430205)

摘 要:苏丹红海州位于努比亚地盾,本文在该地厘定出一套新元古代花岗岩,由中粗粒-中细粒正长花岗岩、中细 粒碱长花岗岩组成,LA-ICP-MS定年结果显示,岩体形成于713±4 Ma,属于泛非造山事件的产物。花岗岩 SiO₂含量 较高,为70.80%~77.83%,A/CNK为0.94~1.08,A/NK为1.12~1.44,为准铝质-弱过铝质花岗岩。花岗岩具有相似的 稀土元素和微量元素配分模式,稀土配分模式呈右倾V字形曲线,轻重稀土分异中等(LREE/HREE=2.46~7.13),δEu 为0.30~0.57,负铕异常中等-强烈。富含大离子亲石元素Th、U、K和高场强元素Zr、Hf,亏损高场强元素Nb、Ta、Sr、P 和Ti。花岗岩具有低I_s比值、亏损ε_{Hd}(t)值和ε_{Hf}(t)值,T_{DM1}与T_{DM2}值较为一致。岩体为A₂型花岗岩,形成于俯冲阶段弧 后拉张环境,因弧后伸展减薄导致软流圈物质上涌,明显的升温、减压促使新生地壳部分熔融。

关键词:苏丹红海州;努比亚地盾;新元古代;A型花岗岩;新生地壳;弧后拉张

中图分类号: P588.121; P595; P542 **文献标识码:** A **文章编号:** 2097-0188(2023)01-0071-10

阿拉伯-努比亚地盾是全球 Rodinia 超大陆研 究、泛非造山事件研究和新生地壳研究的热点地区 之一,是由泛非造山事件形成的新元古代地盾,也是 至今地球上保存最好、出露面积最大的新生大陆地 壳记录了一套完整的年轻大陆地壳的形成过程:泛 非造山演化史^[1-2]。Kennedy最早提出泛非运动的概 念,用以表示非洲大陆上非克拉通岩系(non-cratonic terrain)的构造-热事件,K-Ar时代集中在650~540 Ma,当时并未发现典型的造山标志或巴罗式变质 带^[3]。Kröner 重新定义了泛非造山,将其扩展为950 ~450 Ma^[4]。Stern 注意到 500 Ma 的时间跨度比显生 宙任何一个造山带都更长,因此涉及到泛非造山旋 回,必须在时间跨度和区域尺度上得到更好的限制。 通过对比北非、东非、南非和阿拉伯半岛以及南极、 澳大利亚和南美洲的同位素和年代学特征,将泛非 的概念拓展至大冈瓦纳并且定义为现在的泛非造山 870~550 Ma^[5],囊括了一个持久的、完整的威尔逊旋 回,代表了大洋板块的裂解、大洋俯冲、岛弧形成及 弧后、板块碰撞拼合,再到新生地壳的逃逸构造、走 滑剪切、张性断裂等一系列的构造演化过程,包括俯 冲、碰撞和后碰撞时期,不包括大陆裂解和被动大陆

边缘沉积事件。

然而,对于时间跨度如此之大的泛非造山作用, 其构造岩浆演化阶段划分仍然存在一定的争议^[1.6-7], 比如俯冲机制下,弧后岩浆作用的界定缺乏切实可 靠的证据,主要是很难找到确切的岩石学或者地球 化学证据。苏丹红海州地区位于努比亚地盾,也处 于西冈瓦纳大陆的东缘,是东、西冈瓦纳碰撞拼合的 界限。本次在该区域厘定出一套A型花岗岩套,通 过岩石学、年代学和地球化学研究,探讨其岩石成因 及构造意义。

1区域地质背景与岩石学特征

在东北非,由于新元古代-早古生代泛非造山事件的构造、岩浆和变质活动,形成了两个不同的地壳域:撒哈拉准克拉通和努比亚地盾⁽⁷⁾。本次研究区域位于努比亚地盾(图1),该地盾是在900~700 Ma期间增生形成的新生陆壳,出露面积大,保存较为完整,可能受控于东、西冈瓦纳的汇聚。研究区位于苏丹红海州,出露的前寒武纪地层主要为绿片岩、黑云母片岩、绢云母片岩和大理岩等。岩浆岩较为发育,分布较广,总体呈近南北向、北北东向展布,主要是

收稿日期:2021-12-16

资助项目:中国地质调查局项目"中-苏合作苏丹红海州地区1/25万地质地球化学调查项目(1212011220911)" 作者简介:周佐民(1986-),男,助理研究员,主要从事岩石学、地球化学和地热研究,E-mail;zzm04013114@163.com。

图 1 苏丹努比亚地盾及其构造简图(a)和研究区地质简图(b) Fig.1 Geological and tectonic sketch of the Nubian shield (a) and geological map of the study area (b) 1.新元古代花岗岩;2.新元古代绿片岩;3.第四系;4.断层;5.韧性剪切带;6.采样位置

新元古代的产物,侵入火山质绿片岩、云母片岩中。 区内断裂构造以北北东向为主,其中发育的剪切带 也具有同样的走向。

本次研究的岩体由中粗粒-中细粒正长花岗岩、 中细粒碱长花岗岩组成(表1,图2)。所有岩体均无 变质变形或变质很弱,总体呈肉红色,出露面积相对 较小,呈指状或面状侵入周边围岩,围岩岩性主要为 灰绿色-灰色中基性绿片岩,绿片岩片理大致为北北 东-北东走向。野外地质调查见花岗岩侵入体切割 绿片岩片理,接触界线截然,接触热变质环带无或不 发育。D121-2样品为中粗粒正长花岗岩,块状构造, 中粗粒花岗结构,由钾长石(55%±)、斜长石(10%±)、 石英(25%±)、角闪石(3%±)、黑云母(7%±)组成,角 闪石长柱状、短柱状,半自形-它形,蓝色-黄绿色多 色性。在花岗岩体周边发育辉长岩体,两者共同侵 入安山岩围岩。D173-1样品为中细粒正长花岗岩, 块状构造,中细粒花岗岩结构,局部不等粒结构,由 钾长石(50%±)、斜长石(25%±)、石英(24%±)、黑云 母(1%±)组成。岩体展布方向大致为335°。D164-2 样品为中细粒(二长)花岗岩,块状构造,中细粒花岗

结构,由钾长石(50%±)、斜长石(20%±)、石英(30%±)、少量黑云母(约1%±)组成,部分斜长石可见环带构造。中细粒(二长)花岗岩体近南北向侵入安山岩围岩。以上三个样品的副矿物主要有磷灰石、 锆石、磁铁矿、钛铁矿、榍石等。中细粒碱长花岗岩(D176)为中细粒花岗结构,块状构造,由钾长石(66%±)、斜长石(6%±)、石英(25%±)、黑云母(3%±) 组成,粒径1~4 mm;副矿物主要为锆石、磷灰石、磁铁矿、钛铁矿、榍石和褐帘石等。中细粒碱长花岗岩 体侵入安山岩围岩,在花岗岩体中见安山岩的围岩 捕虏体,岩体总体呈面状展布。

2分析方法

2.1 锆石 U-Pb 年代学

将野外采集的5kg新鲜岩石样品(D121-2,中粗 粒正长花岗岩)利用人工重砂方法分选出锆石,挑选 晶型完好的代表性锆石用环氧树脂固定及抛光,使 其露出核部,然后进行反射光和透射光照相,并进行 阴极发光CL照相。CL拍照工作在南京宏创地质勘 查技术服务有限公司完成。LA-ICP-MS 锆石 U-Pb

表1野外采集样品信息表	
-------------	--

Table 1 The information of samples collected in the held									
样品号	纬度	经度	岩性	新鲜程度					
出露面积	D121-2	21° 21′20.32″N	34° 31′50.76″E	中粗粒正长花岗岩					
新鲜	~100 m ²	D164-2	21° 22′21.85″N	34° 36′38.76″E					
中细粒花岗岩	新鲜	~20 m ²	D173-1	21° 23′27.12″N					
34° 41′45.37″E	中细粒正长花岗岩	新鲜	~500 m ²	D176					
21° 25′ 36.25″ N	34° 39′15.89″E	中细粒碱长花岗岩	新鲜	~40 m ²					

http://hbdz.org.cn

图2 苏丹红海州新元古代A型花岗岩代表性样品 Fig.2 The representative samples of the Neo-proterozoic A-type granites in Red Sea State, Sudan a.碱长花岗岩面状(指状)侵入安山岩;b.D176碱长花岗岩;c.D121-2正长花岗 岩;d.D121-2显微镜下照片;Hb.角闪石,Kf.钾长石,Q.石英

测年工作在中国地质大学(武汉)地质过程与矿产资源国家重点实验室进行,使用Agilent 7500a ICP-MS完成。分析过程中,激光束斑直径采用32m。采用外标锆石91500进行校正,²⁰⁶Pb-²³⁸U年龄和U、Th、Pb的含量由 ICPMSDataCal 软件获得。加权年龄与谐和年龄值(图)由 ISOPLOT 3.76计算并绘制。

2.2 全岩元素地球化学

对所采集的4个新鲜样品进行全岩元素地球化 学测试,全岩主量元素、微量元素和稀土元素分析在 自然资源部武汉中南矿产资源监督检测中心(武汉 综合岩矿测试中心)检测。除FeO含量采用湿化学 方法测得外,其余氧化物在X射线荧光光谱仪(XRF) 上进行,由X荧光光谱α系数测定,分析精度为1%。 稀土元素和微量元素采用电感耦合等离子质谱仪 (ICP-MS)方法测得,经国际标准和国家标准监控,对 于稀土元素的测定误差小于5%,对于其它微量元素 的测定误差为5%~12%。

2.3 Sr-Nd-Hf 同位素

Sr-Nd同位素比值的测定分析在中国地质大学

3形成时代

本次研究对代表性的正长花岗岩样品 D121-2的 21颗锆石进行了 LA-ICP-MS 测年,测年结果列于表 2。锆石普遍为无色透明、浅褐色,自形-半自形,50 ~150 µm,长宽比约为1/1~3/1,具有典型的岩浆震 荡环带(图3),这些锆石特征说明其为岩浆锆石。其 中,18颗锆石给出了谐和年龄(图3),为713±4 Ma (MSWD=0.87),代表岩浆侵位年龄或者结晶年龄, 说明岩体形成于新元古代。16号点的谐和度较差 (86%),17号点和20号点可能为岩浆捕获的早期结 晶锆石,三个锆石不参加投图。

0.015

4地球化学特征

4.1主量元素特征

苏丹红海州花岗岩的主量元素组成见表3,花岗 岩的SiO₂含量较高,为70.80%~77.83%,FeO'/MgO 比值变化较大,为3.23%~22.93%,A/CNK为0.94~ 1.08,A/NK为1.12~1.44,为准铝质-弱过铝质(图 4a)。在SiO₂-FeO'₁(FeO'+MgO)图解中(图4b),红海

25

(武汉)地质过程与矿产资源国家

重点实验室的表面热电离质谱仪 (TIMS)完成。准备约100 mg粉末 样,用专用的阳离子交换柱进行分 离。Sr同位素以国际标准NBS987 进行监控,⁸⁷Sr/⁸⁶Sr值采用⁸⁷Sr/⁸⁶Sr= 0.710 275 ± 0.000 010校正。Nd同 位素采用国际标准JNdi-1进行监 控,¹⁴³Nd /¹⁴⁴Nd 采 用¹⁴³Nd /¹⁴⁴Nd=

 $0.512\ 119 \pm 0.000\ 008$ 校正。锆石 Hf同位素测试也在中国地质大学 (武汉)地质过程与矿产资源国家 重点实验室的LA-MC-ICP-MS上 完成,锆石颗粒剥蚀束斑直径44 μ m,所测Hf点主要位于锆石已有 的测年点位置,¹⁷⁶Lu的半衰期取 1.865×10⁻¹¹/年,亏损地幔单阶段Hf 模式年龄(T_{DM})计算采用现今

值¹⁷⁶Hf /¹⁷⁷Hf = 0.283

和176Lu/177Hf=0.0384,陆壳两阶段

Hf模式年龄(T_{2DM})采用¹⁷⁶Hf/¹⁷⁷Hf=

州A型花岗岩主要为铁质花岗岩类。

4.2稀土元素和微量元素特征

苏丹红海州地区花岗岩的稀土元素和微量元素 测试结果见表3,稀土元素配分模式和微量元素蛛网 图见图 5a-b。稀土元素含量变化稍大,66.65×10°~ 154.72×10°,配分曲线模式为较缓的右倾 V字形或 "海鸥型"曲线,轻重稀土分异中等,LREE/HREE 值 为2.46~7.13,δEu为0.30~0.57,具有较为中等-强 烈的负销异常。Eu负异常随SiO₂含量增大逐渐强 烈,可能与长石尤其是斜长石的结晶分离有关。红 海州A型花岗岩富含大离子亲石元素Th、U、K和高 场强元素Zr、Hf,亏损高场强元素Nb、Ta、Sr、P和Ti,所 有样品的微量元素标准化配分模式基本一致,反映出 具有共同的源区。Sr、P和Ti随岩浆结晶分异演化,负

表2 红海州花岗岩LA-ICP-MS锆石U-Pb同位素测试结果 Table 2 LA-ICP-MS zircon U-Pb isotopic analyses of the granites in Red Sea State

上日	Th	U	TTL/II		同位素	年龄 /Ma					
从写	(×10-6)	(×10 ⁻⁶)	In/U	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/235U	1σ	206Pb/238U	1σ
D121-2-01	255	1 096	0.23	1.010 9	0.029 3	0.114 9	0.001 3	709	14.8	701	7.4
D121-2-02	258	1 115	0.23	1.024 5	0.031 4	0.114 7	0.001 2	716	15.8	700	7.0
D121-2-03	193	837	0.23	1.015 6	0.031 0	0.117 4	0.001 4	712	15.6	716	8.1
D121-2-04	169	943	0.18	1.051 1	0.028 4	0.116 6	0.001 5	729	14.1	711	8.7
D121-2-05	235	1 057	0.22	1.024 9	0.025 8	0.117 5	0.001 2	716	13.0	716	6.7
D121-2-06	203	865	0.23	1.007 2	0.026 1	0.1178	0.001 2	707	13.2	718	6.8
D121-2-07	130	591	0.22	1.059 9	0.0314	0.1178	0.001 3	734	15.5	718	7.5
D121-2-08	219	990	0.22	1.007 9	0.032 8	0.115 0	0.001 5	708	16.6	702	8.5
D121-2-09	201	912	0.22	1.080 5	0.044 3	0.116 2	0.001 7	744	21.6	708	9.6
D121-2-10	136	718	0.19	1.093 5	0.046 7	0.114 7	0.001 6	750	22.7	700	9.2
D121-2-11	114	706	0.16	1.091 3	0.034 6	0.118 0	0.001 5	749	16.8	719	8.6
D121-2-12	47.3	213	0.22	1.158 3	0.048 7	0.1178	0.001 9	781	22.9	718	10.8
D121-2-13	103	604	0.17	1.118 0	0.038 3	0.118 0	0.001 7	762	18.4	719	9.7
D121-2-14	140	736	0.19	1.154 7	$0.040\ 0$	0.118 4	0.001 5	779	18.9	721	8.7
D121-2-15	159	845	0.19	1.118 6	0.040 2	0.118 4	0.001 7	762	19.3	721	9.6
D121-2-16	202	912	0.22	1.245 4	0.046 1	0.118 1	0.001 6	821	20.9	719	9.1
D121-2-17	205	1 007	0.20	1.122 1	0.041 0	0.123 2	0.001 7	764	19.6	749	9.6
D121-2-18	135	724	0.19	1.134 0	0.043 0	0.116 9	0.002 0	770	20.4	712	11.6
D121-2-19	156	740	0.21	1.064 1	0.036 3	0.117 3	0.001 7	736	17.9	715	9.6
D121-2-20	140	789	0.18	1.168 7	0.038 2	0.122 8	0.001 6	786	17.9	747	9.5
D121-2-21	245	1 062	0.23	1.116 7	0.034 4	0.118 3	0.001 5	761	16.5	721	8.7

注:以上年龄数据在中国地质大学(武汉)地质过程与矿产资源国家重点实验室通过LA-ICP-MS完成。

图3 苏丹红海州花岗岩锆石CL特征与锆石U-Pb谐和图

Fig.3 Cathodoluminescence (CL) images of selected zircons and Zircons U-Pb concordia diagram

http://hbdz.org.cn

异常逐渐增强,可能是由于斜长石、磷灰石和含钛矿物(比如钛铁矿和榍石)的分离结晶导致的。

4.3 Sr-Nd-Hf 同位素特征

苏丹红海州花岗岩的 Sr-Nd 同位素测试结果和 计算结果见表4,本次对样品 D121-2进行了 Sr-Nd 同 位素测试,⁸⁷Sr/⁸⁶Sr=0.706 4, ε_{Nd}(t)=+7.00, T_{2DM}=0.85。 对样品 D176进行锆石 Hf 同位素测试,测试结果和计 算结果见表4,ε_{Hf}(t)值为+6.8~+9.3,平均值为+8.20, T_{DMI}值为0.92~1.02 Ga,T_{DM2}值为1.04~1.20 Ga。

5岩石成因

5.1 成因类型

苏丹红海州花岗岩为准铝质-弱过铝质,刚玉分 子含量低(0~0.93),均小于1,明显不同于典型的S 型花岗岩^[10],低的P₂O₅含量(0.02~0.15%)也不同于 典型的S型花岗岩(P₂O₅>0.20%)^[11]。结合其富集 Zr、Hf等高场强元素、明显高的ε_{Nd}(t)、ε_{Hf}(t)值以及T_{DM2} 值与T_{DM1}值较为接近的特征,区别于典型的I型花岗 岩。从图4b和图6a-b的判别图解可以看出,苏丹红 海州花岗岩为A型花岗岩。A₁亚类花岗岩在稀土和 微量元素配分模式图上Nb几乎不亏损,而A₂亚类具 有较强的Nb亏损;A₁亚类的La_N/Yb_N>12,负Eu异常 不明显,而A₂亚类的La_N/Yb_N<10,负Eu异常明 显^[12-13]。红海州花岗岩亏损Nb,Eu负异常明显,La_N/ Yb_N<10(La_N/Yb_N值为1.23~4.65),在Eby等(1992) A₁-A₂判别图解(图6)上也全部落入A₂区域^[14],因此, 红海州花岗岩应该为A₂型花岗岩。

5.2 物质来源讨论

苏丹红海州地区A型花岗岩具有相似的稀土元 素和微量元素配分模式,说明样品是同源岩浆分异 形成的,Eu、Sr、P和Ti元素的负异常特征也反映了长 石、钛铁矿、磷灰石和榍石等矿物的分离结晶。

关于A型花岗岩的来源,目前仍然存在较大的 争议,主要的观点有:(1)残留长英质麻粒岩重熔说, 认为是在I型花岗岩形成之后所残留的长英质麻粒 岩再次熔融形成,高温重熔促使角闪石、黑云母分解 和锆石、磷灰石溶解,导致F和HFSE含量迅速增 高^[15-16];(2)英云闪长岩和花岗闪长岩直接部分熔融 说^[17],认为可以由英云闪长岩在无水环境或水不饱和 环境下通过部分熔融直接形成;(3)幔源碱性岩浆结

表3 红海州 A型花岗岩的地球化学分析结果 Table 3 Geochemical compositions of the A-type granites in Red Sea State

岩性正长花岗岩正长花岗岩城长花岗岩花岗岩花岗岩岩性正长花岗岩延长花岗岩城代市岗岩花岗岩SiO272.0570.876.677.83Ba531307168224TiO20.3050.7560.0880.07La23.118.413.97.48Al_Q313.7212.8812.712.34Ce59.750.73820.8FeO5.552.690.9910.627Nd31.629.912.412.1MnO0.0410.0660.020.019Sm6.886.272.273.54MgO0.3791.220.0810.047Eu0.681.10.220.35CaO1.422.580.2710.699Gd5.995.242.173.18Na ₀ O4.083.343.414.1Tb1.10.860.360.72K ₂ O4.63.195.273.62Dy6.95.142.365.2P ₂ O ₅ 0.0510.1540.0160.016Ho1.461.020.521.15FeO'MgO7.343.2315.1522.93Tm0.680.430.30.63FeO/MgO0.880.760.940.96Yb4.512.842.244.36A/NK1.171.441.121.16Hf9.668.183.586.55Sc8.54115.988.37Ta0.7	样号	D121-2	D173-1	D176	D164-2	样号	D121-2	D173-1	D176	D164-2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	岩性	正长花岗岩	正长花岗岩	碱长花岗岩	花岗岩	岩性	正长花岗岩	正长花岗岩	碱长花岗岩	花岗岩
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiO_2	72.05	70.8	76.6	77.83	Ba	531	307	168	224
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TiO ₂	0.305	0.756	0.088	0.07	La	23.1	18.4	13.9	7.48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Al_2O_3	13.72	12.88	12.7	12.34	Ce	59.7	50.7	38	20.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe_2O_3	2.52	1.39	0.262	0.501	Pr	7.43	7.33	3.83	3.09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FeO	0.515	2.69	0.991	0.627	Nd	31.6	29.9	12.4	12.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO	0.041	0.066	0.02	0.019	Sm	6.88	6.27	2.27	3.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MgO	0.379	1.22	0.081	0.047	Eu	0.68	1.1	0.22	0.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaO	1.42	2.58	0.271	0.699	Gd	5.99	5.24	2.17	3.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na ₂ O	4.08	3.34	3.41	4.1	Tb	1.1	0.86	0.36	0.72
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K_2O	4.6	3.19	5.27	3.62	Dy	6.9	5.14	2.36	5.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_2O_5	0.051	0.154	0.016	0.016	Но	1.46	1.02	0.52	1.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeOt	2.78	3.94	1.23	1.08	Er	4.06	2.72	1.62	3.41
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FeO ^t /MgO	7.34	3.23	15.15	22.93	Tm	0.68	0.43	0.3	0.63
	FeO ^t /	0.00	0.76	0.04	0.06	VL	4.51	2 94	2.24	1 26
A/CNK0.960.941.081.03Lu0.630.40.340.64A/NK1.171.441.121.16Hf9.668.183.586.55Sc8.54115.988.37Ta0.760.490.690.77Cr10.533.4223.3Pb106.711.37.67Co2.898.420.810.42Th6.074.097.812.75Ni3.2812.53.740.32U4.541.943.733.9Zn3036.22.838.28Eu0.320.570.300.31Ga19.214.413.115.9 ΣREE 154.72132.3580.5366.65Rb51.645.852.136.2LREE/HREE5.116.107.132.46Sr1412142245.910 ⁴ ×Ga/Al2.642.111.952.43Y35.125.814.228.1Y/Nb3.714.072.857.72Zr30333864.1103Ce/Nb6.328.007.625.71Nb9.456.344.993.64Yb/Ta5.935.803.255.66Cs0.40.90.710.37Zr+Nb+Ce+Y407.25420.84121.29155.54	(FeO ^t +MgO)	0.88	0.76	0.94	0.90	10	4.31	2.64	2.24	4.30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A/CNK	0.96	0.94	1.08	1.03	Lu	0.63	0.4	0.34	0.64
Sc 8.54 11 5.98 8.37 Ta 0.76 0.49 0.69 0.77 Cr 10.5 33.4 22 3.3 Pb 10 6.7 11.3 7.67 Co 2.89 8.42 0.81 0.42 Th 6.07 4.09 7.81 2.75 Ni 3.28 12.5 3.74 0.32 U 4.54 1.94 3.73 3.9 Zn 30 36.2 2.8 38.2 δEu 0.32 0.57 0.30 0.31 Ga 19.2 14.4 13.1 15.9 ΣREE 154.72 132.35 80.53 66.65 Rb 51.6 45.8 52.1 36.2 $LREE/HREE$ 5.11 6.10 7.13 2.46 Sr 141 214 22 45.9 $10^4 \times Ga/A1$ 2.64 2.11 1.95 2.43 Y 35.1 25.8 14.2 28.1 Y/Nb 3.71 4.07 2.85 7.72 Zr 303 338 64.1 103 Ce/Nb 6.32 8.00 7.62 5.71 Nb 9.45 6.34 4.99 3.64 Yb/Ta 5.93 5.80 3.25 5.66 Cs 0.4 0.9 0.71 0.37 $Zr+Nb+Ce+Y$ 407.25 420.84 121.29 155.54	A/NK	1.17	1.44	1.12	1.16	Hf	9.66	8.18	3.58	6.55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sc	8.54	11	5.98	8.37	Та	0.76	0.49	0.69	0.77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cr	10.5	33.4	22	3.3	Pb	10	6.7	11.3	7.67
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co	2.89	8.42	0.81	0.42	Th	6.07	4.09	7.81	2.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni	3.28	12.5	3.74	0.32	U	4.54	1.94	3.73	3.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn	30	36.2	2.8	38.2	δEu	0.32	0.57	0.30	0.31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ga	19.2	14.4	13.1	15.9	ΣREE	154.72	132.35	80.53	66.65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rb	51.6	45.8	52.1	36.2	LREE/HREE	5.11	6.10	7.13	2.46
Y 35.1 25.8 14.2 28.1 Y/Nb 3.71 4.07 2.85 7.72 Zr 303 338 64.1 103 Ce/Nb 6.32 8.00 7.62 5.71 Nb 9.45 6.34 4.99 3.64 Yb/Ta 5.93 5.80 3.25 5.66 Cs 0.4 0.9 0.71 0.37 Zr+Nb+Ce+Y 407.25 420.84 121.29 155.54	Sr	141	214	22	45.9	10 ⁴ ×Ga/Al	2.64	2.11	1.95	2.43
Zr 303 338 64.1 103 Ce/Nb 6.32 8.00 7.62 5.71 Nb 9.45 6.34 4.99 3.64 Yb/Ta 5.93 5.80 3.25 5.66 Cs 0.4 0.9 0.71 0.37 Zr+Nb+Ce+Y 407.25 420.84 121.29 155.54	Y	35.1	25.8	14.2	28.1	Y/Nb	3.71	4.07	2.85	7.72
Nb 9.45 6.34 4.99 3.64 Yb/Ta 5.93 5.80 3.25 5.66 Cs 0.4 0.9 0.71 0.37 Zr+Nb+Ce+Y 407.25 420.84 121.29 155.54	Zr	303	338	64.1	103	Ce/Nb	6.32	8.00	7.62	5.71
Cs 0.4 0.9 0.71 0.37 Zr+Nb+Ce+Y 407.25 420.84 121.29 155.54	Nb	9.45	6.34	4.99	3.64	Yb/Ta	5.93	5.80	3.25	5.66
	Cs	0.4	0.9	0.71	0.37	Zr+Nb+Ce+Y	407.25	420.84	121.29	155.54

注:主量元素单位为%;微量元素的单位为10°;以上数据在自然资源部中南矿产资源监督检测中心检测完成。

图5 苏丹红海州A型花岗岩的稀土配分模式和微量元素蛛网图(据参考文献[9]) Fig.5 Chondrite-normalized REE patterns (a) and the Chondrite-normalized multi-element diagram of the A-type granites in Red Sea State (b)

表 4	苏丹红海州化南右的Sr-Nd 同位素组成
Table / Sr	Nd isotopos of the granites in Red Sea State

	Tuble 4		pes of the g		u ocu o	late	
⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	(⁸⁷ Sr/ ⁸⁶ Sr) _i	147Sm/144Nd	143Nd/144Nd	$\varepsilon_{Nd}(t)$	T _{2DM} /Ga	Sm/Nd

样品号	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	$({}^{87}Sr/{}^{86}Sr)_i$	147Sm/144Nd	143Nd/144Nd	$\epsilon_{Nd}(t)$	T _{2DM} /Ga	Sm/Nd	f _{Sm/Nd}
D121-2	1.06	0.717 19	0.706 4	0.13	0.512 692	7.00	0.85	0.22	-0.33

注:以上数据由中国地质大学(武汉)地质过程与矿产资源国家重点实验室的表面热电离质谱仪(TIMS)完成。

.....

	表5 苏丹红海州花岗岩的锆石 Hf 同位素组成
able 5	Zircon Hf isotopes of the granites in Red Sea State

点号(D176)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	176Lu/177Hf	2σ	εHf(t)	T _{DM1} /Ga	T _{DM2} /Ga	$f_{Lu/Hf}$
1	0.282 607	0.000 036	0.034 144	0.000 820	0.001 323	0.000 031 7	9.3	0.92	1.04	-0.96
2	0.282 532	0.000 040	0.022 881	0.000 218	0.000 916	$0.000\ 008\ 8$	6.8	1.02	1.20	-0.97
3	0.282 583	0.000 042	0.029 975	0.000 167	0.001 181	$0.000\ 006\ 0$	8.5	0.95	1.09	-0.96

注:以上数据由中国地质大学(武汉)地质过程与矿产资源国家重点实验室的LA-MC-ICP-MS完成。

晶分离后形成残余花岗质熔体[14,18];(4)幔源碱性岩 浆与壳源岩浆(岩石)反应后形成正长质岩浆,经分异 演化形成花岗质熔体109;或正长质岩浆再与酸性壳源 岩浆(岩石)反应,形成花岗质岩石;(5)幔源拉斑质岩 浆极端分异或底侵拉斑玄武岩低度部分熔融[20-22];(6) 源自地幔岩石重熔分异形成碱性花岗岩[23];(7)经幔源 岩浆底侵加热后,下地壳发生熔融[16.24.25];(8)壳幔岩浆 混合^[26]。可以看出,A型花岗岩的成因和物质来源仍

Т

样品号

然没有统一的认识,或者说任何一种单一的模式都无 法概括和兼顾所有问题,或许是多因子作用的综合过 程^[12-13],A型花岗岩可能是多源多成因的^[27]。

前两种模式都是熔融模式,模式一最大的挑战 有两点:其一,石英+斜长石+碱性长石+角闪石+黑云 母±榍石±锆石±磷灰石的英云闪长质残留相矿物组 合不符合实验测试结果,随温度逐渐升高和部分熔 融程度逐渐增大,碱性长石(860℃,5%熔融程度)和

http://hbdz.org.cn

图6 苏丹红海州花岗岩的岩石类型判别图解 a-b 图引自文献^[15]; c-f 图引自文献^[14]) Fig.6 Discrimination diagrams of the A-type granites in Red Sea State A.A型花岗岩; I&S.I型和S型花岗岩; FG.分异的长英质花岗岩; OGT. 没分异的 M、I和S 型花岗岩; A1.A1型花岗岩; A2.A2型花岗岩; OIB. 洋岛玄武岩; IAB. 岛弧玄武岩

黑云母(880℃,18%熔融程度)相继消失,而15%的 熔融程度是形成活动岩浆的最低限度。因此,英云 闪长质岩石至少在熔融时不可能有碱性长石和黑云 母的残留。其二,主量元素地球化学特征矛盾。理 论上,残留相应富Ca、Al(斜长石)和Fe、Mg(辉石±角 闪石),亏损Si和K,Fe/Mg比值低,而实际却完全相 反。模式二的挑战在于微量元素地球化学特征:A1 亚类花岗岩的Y、Nb、Ta、Zr、Hf、Ga、Ce等不相容元素 与OIB洋岛玄武岩具有明显的亲缘性。苏丹红海州 目前尚未发现有幔源碱性岩浆岩和正长岩,因此排 除模式三和模式四。红海州A型花岗岩非碱性花岗 岩,因此模式六不合适。花岗岩中并未发现镁铁质 包体,Hf同位素比较均一,所以模式八也不合适。本 4)、亏损的 ε_{Nd}(t)值(+7.00)和 ε_{Hf}(t)值(+6.8~+9.3,平均 值为+8.20)以及较为一致的 T_{DM1}、T_{DM2}值(0.92~1.02 Ga 和 1.04~1.20 Ga),说明其很可能是源于新生地壳 的部分熔融。

6形成的构造环境

A型花岗岩最初的定义是"非造山"的张性环境^[17],但目前它的含义得到了空前的拓展,不再限于板内裂解的"非造山"环境,还可以形成于后碰撞时期、后造山以及与俯冲相关的构造环境^[3436]。Bonin提出大的A型花岗岩省往往不发育在板内环境,而是位于板块的边缘,A型花岗岩在空间上与造山事件无关,但在时间上关系密切,可延续至造山事件结束

花岗岩 SiO,含量较高(70.8% ~77.83%, 平均值为 74.32%)、同时期的基性-超 基性岩浆岩很少发育,排除 了幔源岩浆直接分异演化或 底侵岩浆低度部分熔融模 式,该模式通常产生低硅的 中性岩石组分[28]。根据前人 研究资料,努比亚地盾在700 ~ 850 Ma 期间处于俯冲阶 段,包括俯冲消减带、弧和弧 后构造机制。苏丹位于努比 亚地盾,而努比亚地盾主要 由新元古代的新生地壳组 成,其源于地幔分异演化,因 此苏丹红海州的A型花岗岩 可能是俯冲阶段弧后拉张机 制启动后,幔源岩浆上涌,促 使新生地壳重熔而形成的。 Litvinovsky等经过研究发现, 在努比亚地盾上,大量的A型 花岗岩形成于新生地壳[29]。 不同于古老克拉通的 Sr-Nd 同位素特征[30-31],前人研究认 为,新生的新元古代地幔熔体 的初始 Sr 同位素比值约为 0.703^[7,32], ε_M(t)值的变化范围 为+3~+10^[33],红海州A型花 岗岩具有低的 Isr 比值(0.706

后 500 Ma,直到碱性岩的出现^[13]。虽然 A 型花岗岩 可以形成于整个地质史的不同构造部位^[15],但岩浆侵 位于伸展拉张的构造环境为大家所公认,区域构造 背景可以是伸展、挤压或剪切走滑构造环境^[37,38]。

苏丹红海州位于努比亚地盾,新元古代800~ 650 Ma期间,大洋岛弧、弧后盆地混杂体横向拼合堆 积形成了阿拉伯-努比亚地盾的新生物质,同时也形 成了一系列弧-弧缝合带,伴随发育大洋俯冲、岛弧 和弧后岩浆作用。Evuk等认为,720~630 Ma为泛 非造山最后的岩浆活动、变质活动峰期,遍布于撒哈 拉准克拉通、Bayuda沙漠和阿拉伯-努比亚地盾^[7]。 根据前人研究成果,在全球的构造演化过程中,包括 泛非造山和古亚洲洋的构造演化,850 Ma为俯冲起 始时间(initial subduction), 850~700 Ma或 870~ 690 Ma为俯冲阶段,700~625 Ma为主碰撞期,两期 都伴随着大量的岩浆作用和变质作用^[39-41]。最近,有 学者在努比亚地盾与苏丹相邻的厄立特里亚地区发 现了851 Ma的A型花岗岩,其形成于俯冲作用下的 弧后伸展构造环境^[42],与本次研究的A型花岗岩属于 同一构造阶段,且两者是在相似构造背景下形成的。 红海州A型花岗正是在俯冲阶段弧后拉张环境下, 由于软流圈物质上涌,促使新生地壳熔融后经过分 离结晶演化而来。

7结论

(1)苏丹红海州花岗岩 SiO₂含量较高,为准铝 质-弱过铝质 A₂型花岗岩。LA-ICP-MS测年结果显 示,其形成于713±4 Ma。

(2)花岗岩具有低的 I_{sr}比值、亏损的 ε_{Nd}(t)值和 ε_{нf} (t)值, T_{DM1}与 T_{DM2}值也较为一致,可能源于新生地壳 的部分熔融。

(3)岩体形成于俯冲阶段弧后拉张环境,因弧后 伸展减薄导致软流圈物质上涌,明显的升温、减压促 使新生地壳部分熔融。

致谢:室内测试分析得到了中国地质大学(武汉)地 质过程与矿产资源国家重点实验室和中南矿产资 源监督检测中心的大力支持,审稿专家和责任编辑 仔细审阅文稿并提出了很好的修改意见,在此谨致 谢忱。

参考文献:

[1]魏浩,徐九华,王建雄,等.非洲东北部阿拉伯-努比亚地 盾(ANS)构造演化与金成矿作用[J].地质与勘探,2015, 51(2):383-394.

- [2] ORIOLO S, OYHANTÇABAL P, WEMMER K, et al. Contemporaneous assembly of Western Gondwana and final Rodinia break-up: Implications for the supercontinent cycle[J]. Geoscience Frontiers, 2017.
- [3] KENNEDY W Q. The structural differentiation of Africa in the Pan-African (± 500 m.y.) tectonic episode[J]. In: Leeds University Research Institute for African, 1964, 8: 48–49.
- [4] KRÖNER. Late Precambrian plate tectonics and orogeny: a need to redefine the term Pan–African[J]. In: Klerkx, J., Mi– chot, J. (Eds.), African Geology. Royal, 1984: 23–28.
- [5] STERN R J. Arc assebly and continental collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 319–351.
- [6] ORIOLO S, OYHANT ÇABAL P, WEMMER K, et al. Contemporaneous assembly of Western Gondwana and final Rodinia break-up: Implications for the supercontinent cycle[J]. Geoscience Frontiers, 2017.
- [7] EVUK D, FRANZ G, FREI D, et al. The Neoproterozoic evolution of the central-eastern Bayuda Desert (Sudan)[J]. Precambrian Research, 2014, 240: 108–125.
- [8] FROST B R, BARNES C G, COLLINS W J, et al. A Geochemical Classification for Granitic Rocks[J]. Journal Of Petrology, 2001, 42: 2033–2048.
- [9] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313–345.
- [10] WOLF M B, LONDON D. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms[J]. Geochimica Et Cosmochimica Acta, 1994, 58(19): 4127–4145.
- [11] CHAPPELL B W. Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535–551.
- [12] 周佐民.碱质A型花岗岩的判别、成因与构造环境[J]. 华 南地质与矿产,2011,27(3):215-220.
- [13] BONIN B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1-2): 1-29.
- [14] EBY G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology. 1992, 20: 641–644.
- [15] WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407–419.
- [16] COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to

southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189–200.

- [17] CREASER R A, PRICE R C, WORMALD R J. A-type granites revisited: Assessment of a residual-source model [J]. Geology, 1991, 19(2): 163.
- [18] LOISELLE M C, WONES D R. Characteritics and origin of anorogenic granites[J]. Geolosical society of American Bulletin (Abstracts with Programs), 1979, 11: 468.
- [19] MINGRAM B, TRUMBULL R B, LITTMAN S, et al. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components[J]. Lithos, 2000, 54 (1): 1–22.
- [20] LITVINOVSKY B A, JAHN B, ZANVILEVICH A N, et al. Crystal fractionation in the petrogenesis of an alkali monzodiorite – syenite series: the Oshurkovo plutonic sheeted complex, Transbaikalia, Russia[J]. 2002, 64: 97–130.
- [21] TURNER S P, FODEN J D, MORRISON R S. Derivation of some A2 type magmas by fractionation of basaltic magma: An example from the Pathaway Ridge, South Australia[J]. Lithos, 1992, 28: 151–179.
- [22] FROST C D, FROST B R, CHAMBERLAIN K R, et al. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite[J]. Journal of Petrology, 1999, 40(12): 1771–1802.
- [23] 赵振华,王中刚,邹天人,等.新疆乌伦古富碱侵入岩成 因探讨[J].地球化学,1996,25(3):205-220.
- [24] ANDERSON L J, BENDER E E. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America[J]. Lithos, 1989, 23: 19–52.
- [25] RÄMÖ O T, MCLEMORE V T, HAMILTON M A, et al. Intermittent 1630–1220 Ma magmatism in central Mazatzal province: New geochronologic piercing points and some tectonic implications[J]. Geology, 2003, 31(4): 335.
- [26] YANG J H, WU F Y, CHUNG S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1-2): 89–106.
- [27] 王德滋,周新民.中国东南部晚中生代花岗质火山-侵入 杂岩成因与地壳演化[J].北京:科学出版社,2002:160-188.
- [28] SISSON T W, RATAJESKI K, HANKINS W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661.
- [29] LITVINOVSKY B A, JAHN B M, EYAL M. Mantle-derived

sources of syenites from the A-type igneous suites – New approach to the provenance of alkaline silicic magmas[J]. Lithos, 2015, 232: 242–265.

- [30] 任军平, 王杰, 古阿雷, 等. 赞比亚东北部正长花岗岩的 锆石 U-Pb 年龄和 Lu-Hf 同位素特征[J]. 地质调查与研 究, 2019, 42(3):161-165.
- [31] SUN K, ZHANG L L, ZHAO Z D, et al. Episodic crustal growth in the Tanzania Craton: evidence from Nd isotope compositions[J]. China Geology, 2018, 1(2): 210–224.
- [32] 吴兴源,刘晓阳,任军平,等.坦桑尼亚Panda山碳酸岩 地球化学特征及岩石成因研究进展[J].地质调查与研 究,2019,42(2):86-95.
- [33] ALI K A, MOGHAZI A M, MAURICE A E, et al. Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: No evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt[J]. International Journal of Earth Sciences, 2012, 101: 1705-1722.
- [34] EBY G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1-2): 115–134.
- [35] 吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其述评 [J]. 岩石矿物学杂志, 2007, (1):57-66.
- [36] 贾小辉,王强,唐功建.A型花岗岩的研究进展及意义[J]. 大地构造与成矿学,2009,33(3):465-480.
- [37] 李小伟,莫宣学,赵志丹,等.关于A型花岗岩判别过程 中若干问题的讨论[J].地质通报,2010,(Z1):278-285.
- [38] MILANI L, LEHMANN J, NAYDENOV K V, et al. A-type magmatism in a syn-collisional setting: The case of the Pan-African Hook Batholith in Central Zambia[J]. Lithos, 2015, 216–217: 48–72.
- [39] ABDELSALAM M G, STERN R J. Mapping Precambrian structures in the Sahara Desert with SIR-C/X-SAR radar: The Neoproterozoic Keraf Suture, NE Sudan[J]. Journal of Geophysical Research: Planets, 1996, 101(E10): 23063– 23076.
- [40] DOBRETSOV N L, BUSLOV M M, VERNIKOVSKY V A. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-up of Rodinia[J]. Gondwana Research, 2003, 6(2): 143-159.
- [41] KHAIN E V, BIBIKOVA E V, SALNIKOVA E B, et al. The Palaeo–Asian ocean in the Neoproterozoic and early Palaeo– zoic: new geochronologic data and palaeotectonic recon– structions[J]. Precambrian Research, 2003, 122(1): 329–358.
- [42] 赵凯,姚华舟,王建雄,等.厄立特里亚Koka花岗岩锆石 U-Pb年代学、地球化学特征及其地质意义[J].地球科学, 2020,45(1):156-167.