长石中 Pb同位素的LA-MC-ICPMS测定

耿建珍,张健,周红英,刘义博,吴磊,吴良英

摘要：长石矿物的同位素分析技术是地质年代学研究领域重要的研究方向，本文采用LA-MC-ICPMS对长石样品进行了同位素测试，标准样品结果在误差范围内与推荐值一致，测试精度达到1‰以内。

关键词：LA-MC-ICPMS；同位素；精度

中图分类号：P597.3 文献标识码：A 文章编号：1672－4135(2019)04－0250－06

分馏校正

Goldschmidt (1999) 对分析精度有影响。Golding et al. (2011) 在实验中发现，长石中的 Pb 同位素分馏校正较为重要。在自然界中，限制了技术的发展和应用，加热后使 Pb 同位素分馏系数接近，因此对 Pb 同位素校正的困难也成为了高精度 Pb 同位素研究的难题。Paul et al. 利用 Gold-Trap 并不能有效地降低低动态的 Hg 本底，而利用在线校正的方法显然是以上国内外的研究表明，LA-MC-ICPMS 存在一些影响其分析准确性的因素，其中最主要是分馏和分析过程中分馏效应及基体效应。激光器与 (MC)-ICPMS 仪器联用技术的发展，人们开发了很多抑制元素分馏方法的研究，并且对这些机理的认识也逐渐深刻。Longerich et al. 的研究发现，元素的分馏行为服从 Goldschmidt 的元素地球化学分类，即同位元素分馏行为相近 [17]。Gunter (1999) 对 He 作为载气的增敏作用进行了研究，结果发现以 He 气在剥蚀池外与 Ar 气溶胶混合后进 ICP 能够提高灵敏度 2~3 倍，并且背景信号大大降低，同时也降低了 1 个数量级 [18]。Guillong et al. 对 266 nm, 213 nm, 193 nm 激光剥蚀行为进行了比较研究，结果表明 193 nm 剥蚀的颗粒粒径平均最小，从而得到最小的分馏效应和基体效应以及最稳定的比值信号。作者认为，小于 213 nm 波长的激光更加适合于样品的原位分析，分馏效应是影响 LA-ICPMS 分析质量最重要的因素 [19]。随着 MC-ICP-MS 技术的发展，Paul et al. 研究了利用离子计数器对 206 Pb 进行测定的问题，结果表明利用离子计数器可以解决 206 Pb 的测定问题 [20]。在已有的对 Pb 同位素进行原位分析的研究中，作者所采用的激光剥蚀系统多以 213 nm 和 266 nm 为主的长波长激光脉冲，质谱分析系统也多是单接收的四极杆及磁质谱型 ICP-MS，随着近年来激光和质谱技术的发展，采用更短波长的激光剥蚀系统和专门进行同位素分析的多接收器等离子质谱联用，在实验方面有有着较好的改进空间 [21]。

本方法研究采用美国 Thermo Fisher 公司生产的 NEPTUNE，其离子光学路采用能量聚焦和质量聚焦的双聚焦设计，并采用动态变焦（Zoom）将质量色散扩大至 17%。仪器配有 9 个法拉第接收器和 4 个离子计数器接收器，除了中心杯和离子计数器外，其余 8 个法拉第杯配置在中心杯的两侧，并以马达驱动进行精确的位置调节，4 个离子计数器捆绑在 L4 法拉第杯上。激光器为美国 ESI 公司生产的 NEW WAVE 193 nm FX ArF 准分子激光器，波长 193 nm，脉冲宽度小于 4 ns，束斑直径 1,2,5,10,20,25,35,50,75,76,100 和 150 微米可调，脉冲频率 1~200 Hz 连续可调，激光输出最大功率 15 J/cm^2 [21,22]。分析过程中，采用两种杯结构设置和仪器条件，详见表 1。

表 1 LA-MC-ICPMS 载气和操作条件

| Tab.1 The collector configuration and operating parameters |
|---|---|---|---|---|---|---|
| L4 | L3 | L2 | L1 | C | H2 | H3 |
| 204 Hg | 203 Tl | 206 Pb | 203 Tl | 206 Pb | 205 Pb | 203 Pb |
| IC2 | IC3 | IC4 | IC5 | L4 | C | H2 | H4 |
| 204 Hg | 203 Pb+Hg | 203 Pb | 203 Pb |
| 激光 | 溶液 |
| 冷却气 (Ar) | 16 L/min | 16 L/min |
| 辅助气 (Ar) | 0.65 L/min | 0.72 L/min |
| 极气 (Ar) | 1.016 L/min | 0.984 L/min |
| 侧气 (He) | 0.85 L/min |
| 增益 N2 | 4 mL/min | 4 mL/min |
| RF 功率 | 1 300 W | 1 250 W |
| 积分时间 | 0.066 s | 0.066 s |
| 激光能量密度 | 3~4 J/cm² |
| 雕刻直径 | 50 μm |
| 转速率 | 10 Hz |

1.2 载气的干扰校正

载气中不可避免的受到 206 Hg 的干扰，目前的 MC-ICPMS 的分辨能力远远不能分开 206 Hg 和 203 Pb，因此对 206 Hg 干扰的扣除也成为高精度 Pb 同位素研究的难题。Paul et al. 利用 Gold-Trap 并不能有效地降低动态的 Hg 本底，而利用在线校正的方法显然是...
一种有效的途径，但没有解决根本问题。所以，基体效应，质量歧视效应，对206Pb的准确测定和204Hg的干扰扣除，仪器分馏的校正方法，同位素分馏校正是都需要解决的问题。由于采用高分子过滤器不能对Hg进行完全去除，并且206Pb(Hg)的丰度很低，因此对206Pb(Hg)和204Hg的准确测定成为能否进行204Hg干扰扣除的关键。本实验以离子计数器对这两个同位素进行同时接收和准确测定，从而有效的解决204Hg的干扰扣除问题。

2 结果与讨论

2.1 微区原位标准物质分析结果

对SRM610, SRM612, BCR-2G三种国际上通用的同位素标准物质进行了微区原位Pb同位素测定。测试采用2.1中所列杯结构，激光器能量密度10～11 J/cm2，激光束斑直径50 μm，频率8～10 Hz。NETUNE质谱仪条件：冷却气体16 L/min，辅助气体0.60 L/min，Ar载气1.016 L/min，He载气0.85 L/min，RF功率1 351 W，积分时间0.066 s，信号采集时间50 s(前20 s为空白)。激光剥蚀物质以He为载气送入Neptune进行Pb同位素微区原位测定。204Hg信号用以扣除同质异位素干扰，比值采用204Hg/204He=0.229 883，以204Tl/204Tl为内标进行质量歧视分馏校正，取204Tl/204Tl=2.388 9作为Pb同位素的分馏校正参数。测试结果见表2（本文标准物质推荐值参见地质和环境标准物质库：http://geoREM.mpch-mainz.gwd.de）。三种标准物质测试结果分别为：SRM610 206Pb/204Pb=17.063 ± 0.015 (n=10)。

<table>
<thead>
<tr>
<th>样品号</th>
<th>206Pb/204Pb</th>
<th>1σ</th>
<th>208Pb/204Pb</th>
<th>1σ</th>
<th>204Pb/206Pb</th>
<th>1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRM610-1</td>
<td>17.050</td>
<td>0.006</td>
<td>15.504</td>
<td>0.005</td>
<td>36.971</td>
<td>0.016</td>
</tr>
<tr>
<td>SRM610-2</td>
<td>17.069</td>
<td>0.006</td>
<td>15.505</td>
<td>0.005</td>
<td>37.099</td>
<td>0.014</td>
</tr>
<tr>
<td>SRM610-3</td>
<td>17.061</td>
<td>0.005</td>
<td>15.508</td>
<td>0.005</td>
<td>37.008</td>
<td>0.013</td>
</tr>
<tr>
<td>SRM610-4</td>
<td>17.066</td>
<td>0.005</td>
<td>15.504</td>
<td>0.005</td>
<td>36.996</td>
<td>0.013</td>
</tr>
<tr>
<td>SRM610-5</td>
<td>17.065</td>
<td>0.005</td>
<td>15.507</td>
<td>0.005</td>
<td>37.016</td>
<td>0.013</td>
</tr>
<tr>
<td>SRM610-6</td>
<td>17.060</td>
<td>0.005</td>
<td>15.513</td>
<td>0.005</td>
<td>37.008</td>
<td>0.014</td>
</tr>
<tr>
<td>SRM610-7</td>
<td>17.074</td>
<td>0.006</td>
<td>15.540</td>
<td>0.005</td>
<td>37.088</td>
<td>0.014</td>
</tr>
<tr>
<td>SRM610-8</td>
<td>17.080</td>
<td>0.006</td>
<td>15.521</td>
<td>0.006</td>
<td>37.043</td>
<td>0.016</td>
</tr>
<tr>
<td>SRM610-9</td>
<td>17.051</td>
<td>0.006</td>
<td>15.497</td>
<td>0.005</td>
<td>36.974</td>
<td>0.013</td>
</tr>
<tr>
<td>SRM610-10</td>
<td>17.073</td>
<td>0.006</td>
<td>15.511</td>
<td>0.005</td>
<td>36.998</td>
<td>0.013</td>
</tr>
<tr>
<td>SRM610-11</td>
<td>17.060</td>
<td>0.005</td>
<td>15.516</td>
<td>0.006</td>
<td>36.999</td>
<td>0.013</td>
</tr>
<tr>
<td>SRM610-12</td>
<td>17.098</td>
<td>0.006</td>
<td>15.541</td>
<td>0.006</td>
<td>37.073</td>
<td>0.014</td>
</tr>
<tr>
<td>SRM610-13</td>
<td>17.072</td>
<td>0.007</td>
<td>15.505</td>
<td>0.006</td>
<td>37.069</td>
<td>0.016</td>
</tr>
<tr>
<td>SRM610-14</td>
<td>17.071</td>
<td>0.006</td>
<td>15.508</td>
<td>0.005</td>
<td>37.009</td>
<td>0.013</td>
</tr>
</tbody>
</table>

注：实验数据在天津地质调查中心实验测试室完成。
253
耿建珍等:长石中Pb同位素的LA–MC–ICPMS测定
第4期

30), $^{207}\text{Pb}/^{204}\text{Pb}=15.507 \pm 0.017$ (n=30), $^{208}\text{Pb}/^{204}\text{Pb}=36.996 \pm 0.013$ (n=30); SRM612 $^{208}\text{Pb}/^{204}\text{Pb}=17.105 \pm 0.015$ (n=16), $^{207}\text{Pb}/^{204}\text{Pb}=15.521 \pm 0.020$ (n=16), $^{208}\text{Pb}/^{204}\text{Pb}=37.022 \pm 0.013$ (n=16); BCR-2G $^{208}\text{Pb}/^{204}\text{Pb}=18.749 \pm 0.010$ (n=18), $^{207}\text{Pb}/^{204}\text{Pb}=15.634 \pm 0.012$ (n=18), $^{208}\text{Pb}/^{204}\text{Pb}=38.725 \pm 0.017$ (n=18), 以上三种标准物质测试结果在误差范围内均与推荐值一致。

2.5 长石样品分析结果

对两件薄片上长石样品进行了微区原位测试，杯结构设置和仪器参数见表1, 采用75微米剥蚀直径，以BCR-2G为外标, 15CD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.561 \pm 0.016$ (n=26), $^{207}\text{Pb}/^{204}\text{Pb}=15.273 \pm 0.016$ (n=26), $^{206}\text{Pb}/^{204}\text{Pb}=35.067 \pm 0.016$ (n=26), 15JD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.583 \pm 0.010$ (n=23), $^{207}\text{Pb}/^{204}\text{Pb}=15.308 \pm 0.008$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=35.253 \pm 0.012$ (n=23) (结果见表3)。采用传统溶液法对这两件样品进行了对比测试, 仪器测定前采用NBS981进行仪器校准, 结果见表4。以BCR-2G为外标对实际样品进行长石微区原位铅同位素测定, 测试结果与溶液法测试结果在误差范围内一致, 说明长石微区原位Pb同位素测试结果是可靠的, 测试误差 $^{208}\text{Pb}/^{204}\text{Pb} \leq 1\%\epsilon$, $^{207}\text{Pb}/^{204}\text{Pb} \leq 1\%\epsilon$, $^{206}\text{Pb}/^{204}\text{Pb} \leq 0.5\%\epsilon$. 加入Tb为内标进行测试, 15CD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.231 \pm 0.018$ (n=23), $^{207}\text{Pb}/^{204}\text{Pb}=14.973 \pm 0.019$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=34.922 \pm 0.022$ (n=23), 15JD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.243 \pm 0.021$ (n=19), $^{207}\text{Pb}/^{204}\text{Pb}=15.308 \pm 0.010$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=35.253 \pm 0.012$ (n=23) (结果见表3)。以BCR-2G为外标对实际样品进行长石微区原位铅同位素测定, 测试结果与溶液法测试结果在误差范围内一致, 说明长石微区原位Pb同位素测试结果是可靠的, 测试误差 $^{208}\text{Pb}/^{204}\text{Pb} \leq 1\%\epsilon$, $^{207}\text{Pb}/^{204}\text{Pb} \leq 1\%\epsilon$, $^{206}\text{Pb}/^{204}\text{Pb} \leq 0.5\%\epsilon$. 加入Tb为内标进行测试, 15CD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.231 \pm 0.018$ (n=23), $^{207}\text{Pb}/^{204}\text{Pb}=14.973 \pm 0.019$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=34.922 \pm 0.022$ (n=23), 15JD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.243 \pm 0.021$ (n=19), $^{207}\text{Pb}/^{204}\text{Pb}=15.308 \pm 0.010$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=35.253 \pm 0.012$ (n=23) (结果见表3)。以BCR-2G为外标对实际样品进行长石微区原位铅同位素测定, 测试结果与溶液法测试结果在误差范围内一致, 说明长石微区原位Pb同位素测试结果是可靠的, 测试误差 $^{208}\text{Pb}/^{204}\text{Pb} \leq 1\%\epsilon$, $^{207}\text{Pb}/^{204}\text{Pb} \leq 1\%\epsilon$, $^{206}\text{Pb}/^{204}\text{Pb} \leq 0.5\%\epsilon$. 加入Tb为内标进行测试, 15CD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.231 \pm 0.018$ (n=23), $^{207}\text{Pb}/^{204}\text{Pb}=14.973 \pm 0.019$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=34.922 \pm 0.022$ (n=23), 15JD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.243 \pm 0.021$ (n=19), $^{207}\text{Pb}/^{204}\text{Pb}=15.308 \pm 0.010$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=35.253 \pm 0.012$ (n=23) (结果见表3)。以BCR-2G为外标对实际样品进行长石微区原位铅同位素测定, 测试结果与溶液法测试结果在误差范围内一致, 说明长石微区原位Pb同位素测试结果是可靠的, 测试误差 $^{208}\text{Pb}/^{204}\text{Pb} \leq 1\%\epsilon$, $^{207}\text{Pb}/^{204}\text{Pb} \leq 1\%\epsilon$, $^{206}\text{Pb}/^{204}\text{Pb} \leq 0.5\%\epsilon$. 加入Tb为内标进行测试, 15CD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.231 \pm 0.018$ (n=23), $^{207}\text{Pb}/^{204}\text{Pb}=14.973 \pm 0.019$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=34.922 \pm 0.022$ (n=23), 15JD-Pb号样品加权平均值为：$^{208}\text{Pb}/^{204}\text{Pb}=15.243 \pm 0.021$ (n=19), $^{207}\text{Pb}/^{204}\text{Pb}=15.308 \pm 0.010$ (n=23), $^{206}\text{Pb}/^{204}\text{Pb}=35.253 \pm 0.012$ (n=23) (结果见表3)。
3结论

利用本实验室LA-MC-ICPMS系统，对三件用于微区分析的玻璃标准物质和两件长石样品进行了微区原位Pb同位素分析，标准样品结果在误差范围内与推荐值一致，两件长石样品测试结果在误差范围内与溶液法测试结果一致，测试精度达到1%以内。在天津地质调查中心实验室建立了长石Pb同位素LA-MC-ICPMS分析方法。实际样品的测试采用外标法可以得到理想结果，而利用膜去溶装置，在进行长石微区原位测试过程中加入Tl溶液为内标进行测试，测定结果与采用BCR-2为外标测试结果以及溶液法结果在误差范围内不一致。本实验室在微区原位长石测试过程中加入内标进行校正的方法尚不成熟，在对实际样品进行测试时采用外标校正法。

参考文献：

[16] 宋佳瑶, 袁洪林, 包志安, 等. 高温熔融研制钾长石玻璃

In situ Pb isotope of feldspar using LA–MC–ICPMS

GENG Jian-zhen1,2, ZHANG Jian1,2, ZHOU Hong-ying1,2, WU Lei1,2,3, LIU Yi-bo1,2,3, WU Liang-ying1,2,3

(1. China University of geoscience (Beijing), Beijing 100083, China; 2. Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China; 3. North China Center for Geoscience Innovation, China Geological Survey, Tianjin 300170, China)

Abstract: In situ Pb isotope analysis of minerals is an important research area in situ analytic technology. This paper uses LA–MC–ICPMS to carry out in-situ test of three standard samples and two feldspar samples, the results of standard samples in the range of error are agreement with the recommended values, the testing results of two feldspar samples are agreement with the solution method, the precision reaches 1.0%.

Key words: Pb isotope; LA-MC-ICPMS; In situ; precision